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Abstract

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of
suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity
transformation the governing boundary layer equations are converted into its dimensionless form. The transformed
simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The
approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless
concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results
are compared with the previous work and a good agreement is observed.

Keywords: Chemical reaction; Suction at the surface; Porous shrinking sheet” Non-linear ordinary differential
equations; Homotopy analysis method.

1. Introduction

The flow over a shrinking surface is an important problem in many engineering processes with applications in
industries. In nature, the presence of pure air or water is impossible. Some foreign mass may be present either
naturally or mixed with the air or water.

Apelbat [1] investigated the mass transfer with a chemical raction of the first order effects of axial diffusion.
Bhattacharyya et al. [2] examined the stability of viscous flow over a stretching sheet. Brady et al. [3] explained the
steady flow in a channel or tube with accelerating surface velocity and found the exact solution to the Navier-Stokes
equations with reverse flow. Cheng et al. [5] investigated the non-similarity solution and correlation of transient heat
transfer in laminar boundary layer flow over a wedge. Gill [6] examined a process for the step-by-step integration of
differential equations in an automatic digital computing machine. Crane [7] investigated the flow past a stretching
plate. Gupta [8] et al. examined the heat and mass transfer on a stretching sheet with suction and blowing. Hakiem et
al. [9] explained the joule heating effects on MHD free convection flow of a micro polar fluid. Hayat et al. [10]
found the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet.

Magnetohydrodynamic (MHD) mixed convection heat transfer flow in porous and non-porous media is of
considerable interest in the technical field due to its frequent occurrence in industrial technology and geothermal
application. Jensen et al. [11] investigated the flow phenomena in chemical vapor deposition of thin films. Kuo Bor-
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Lin [12] examined the heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation
method. Miklavcic et al. [13] explained the viscous flow due to a shrinking sheet. Muhaimin et al.[14] investigated
the effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence
of suction. Sajid et al.[15] examined the MHD rotating flow of viscous fluid over a shrinking surface.

Sajid et al.[16] explained the application of Homotopy analysis method for MHD viscous flow due to a shrinking
sheet. Troy [18] found uniqueness of flow of a second-order fluid past a stretching sheet. Usha et al.1[29]
investigated the axisymmetric motion of a liquid film on an unsteady stretching surface. Wang et al.[30] examined
the fluid flow due to a stretching cylinder.

The aim of this paper is to discuss the mathematical analysis of non-linear MHD boundary layer past a porous
shrinking sheet with suction. The approximate analytical expressions of the dimensionless velocity profiles,
dimensionless temperature profiles, and dimensionless concentration profiles are derived using the Homotopy
analysis method and discussed by graphically.

2. Mathematical formulation of the problem

Let us consider the MHD flow of an incompressible viscous fluid over a shrinking sheet at y = 0. The x and y axes
are taken along and perpendicular to the sheet respectively, as shown in Fig.1. The fluid is assumed to be Newtonian
and electrically conducting and the flow is confined to y > 0. A constant magnetic field of strength B acts in the
direction of y axis. The induced magnetic field is negligible, which is a valid assumption on a laboratory scale. The
assumption is justified when the magnetic Reynolds number is small, Hayat et al. (2007). Since no electric field is
applied and the effect of polarization of the ionized fluid is negligible, we can assume that the electric field E = 0.
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Fig.1 Schematic diagram of fluid flow problem

The chemical reactions are taking place in the flow and a constant suction is imposed at the horizontal surface, see
Fig.1. The governing boundary layer equations of momentum, energy and diffusion for the MHD flow in terms of
vector notation are defined as follows:

Continuity equation:
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Where V is the velocity vector, p is the pressure, V is the kinematic coefficient of viscosity.

Continuity equation in terms of vector notation is
a -
9P v .(pV)=0.
ot
For steady incompressible flow:

0
a_'? =0 and p is a constant.

Continuity equation becomes
0 0 0
(pu) , o)  o(pw) _
X oy oz
Finally, the continuity equation is reduced to

ou ov ow
—+—+—=0.
oXx oy oz
Under these conditions, the basic governing boundary layer equations of momentum, energy and diffusion for mixed
convection flow neglecting Joule's viscous dissipation can be simplified to the following equations:
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Where u, v, w are the velocity components in the x, y and z directions respectively. v is the kinematic viscosity, p is
the pressure, o is the electrical conductivity, p is the density of the fluid, B, is the magnetic induction, ¢ is the
thermal conductivity of the fluid, 4 is the dynamic viscosity, K is the porous medium permeability, C g is the
specific heat at constant pressure and K, is the rate of chemical reaction.

The boundary conditions applicable to the present flow are

u=-U=-ax,v=—a(m-1)y,

w=-W,T=T,,C=C, at y=0, (12)
u—0,T->T,,C>C,_ asy—>w

in which a > 0 is the shrinking constant, W > 0 is the suction velocity, m = 1 when sheet shrinks in x-direction only
and m = 2 when the sheet shrinks axsymmetrically.
Introducing the following similarity transformations

u=axf (n), v=a(m-1)yf (), w=—Javm f (), n:JEz,
1%

0= Q and ¢ = i (12)
T, —T. C.-C.

The eqgn. (1) is identically satisfied and the eqgn. (8) can be integrated to give

p aw w°

— — VvV — ——+constant (13)
yo, 82
The eqgns. (6)-(11) reduces to the following boundary value problem

f (M2 +PrA)f —f%+mf f =0 (14)
@ +mPrf@ —Prof =0 (15)
¢ —Scfp+mscfg —Scyg=0 (16)

The boundary conditions can be written as
f(0) =S, f'(O) =-1,600)=1, ¢0)=1 atnp=0
f'(0)=0, () =0, ¢(0)=0 at 7 > oo

Where Pr is the Prandtl number, Sc is the Schmidt number, M 2 js the Magnetic parameter, y is the Chemical

(17

reaction parameter, A porosity parameter and S is the suction parameter can be defined as follows:

2
pr:l Sc:l MZZﬂ,y k ,1——and S=

a’ D' pa a'~ akK m\/_

when m = 1 (sheet shrinks in x-direction) and m = 2 (sheet shrinks in axisymmetrically). The mass diffusion
equation (16) can be adjusted to meet these circumstances if one takes ¥ > 0 for destructive reaction, = 0 for no

reaction and ¥ < 0 for generative reaction.

(18)

3. Solution of the problem using the Homotopy analysis method

This section deals with a basic strong analytic tool for non-linear problems, namely the Homotopy analysis method
(HAM) which was generated by Liao [19], is employed to solve the nonlinear differential egns. (14) — (16). The
Homotopy analysis method is based on a basic concept in topology. Unlike perturbation techniques like [20], the
Homotopy analysis method is independent of the small/large parameters. Unlike all other reported perturbation and
non-perturbation techniques such as the artificial small parameter method [21], the O -expansion method [22] and
Adomian’s decomposition method [23], the Homotopy analysis method provides us a simple way to adjust and
control the convergence region and rate of approximation series. The Homotopy analysis method has been
35
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successfully applied to many nonlinear problems such as heat transfer [24], viscous flows [25], nonlinear
oscillations [26], Thomas-Fermi’s atom model [27], nonlinear water waves [28], etc. Such varied successful
applications of the Homotopy analysis method confirm its validity for nonlinear problems in science and
engineering. The Homotopy analysis method is a good technique when compared to other perturbation methods.
The existence of the auxiliary parameter h in the Homotopy analysis method provides us with a simple way to adjust
and control the convergence region of the solution series.

3.1 Basic concepts of the Homotopy analysis method

Consider the following differential equation:
N[u(t)]=0 (19)
Where N is a nonlinear operater, t denotes an independent variable, u(t) is an unknown function. For simplicity,

weignore all boundary or initial conditions, which can be treated in the similar way. By means of generalizing the
conventional Homotopy method, Liao constructed the so-called zero-order deformation equation as:

(- p)Lle(t; p)-u,(t)]= PhHEN[o(t; p)] (20)
Where p € [0,1] is the embedding parameter, h # O is a nonzero auxiliary parameter, H (t) # 0 is an auxiliary

function, L an auxiliary linear operater, uo(t) is an initial guess of u(t), gp(t; p) is an unknown function. It is

important to note that one has great freedom to choose auxiliary unknowns in HAM. Obviously, when p = 0 and p
=1, it holds:

olt;0)=u,(t) and (t:1)=uf(t) (21)
Respectively. Thus, as p increases from 0 to 1, the solution qo(t; p) varies from the initial guess uo(t) to the
solution u(t).

Expanding qo(t; p) in Taylor series with respect to p , we have:

o(t; p)=uy(t)+ > u, (t)p" (22)
m=1
1 0"p(t; p)
t)= =P
Uy, (t) ——— (23)

If the auxiliary linear operator, the initial guess, the auxiliary parameter N, and the auxiliary function are so
properly chosen, the series egn.(22) converges at P =1 then we have:

(D)= u6lt) + S 1) @

Differentiating the eqn.(20) for m times with respect to the embedding parameter p , and then setting p =0 and
finally dividing them by m!, we will have so-called mth order deformation equation as:

Lo = 2oty J= N0, 6 @)

Where
N m-1 .
()L Nt o0
m) (m-1p  op”
And
B 0, m<], ”7
An = ms 1 @)

Applying L™ on both side of equation.(25), we get
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In this way, it is easily to obtain U, for m>1,at M ™ order, we have

ult)= 3 u, 1) @

When M — +o0, we get an accurate approximation of the original eqn.(19). For the convergence of the above
method we refer the reader to Liao [19]. If equation.(19) admits unique solution, then this method will produce the

unique solution.

4. Approximate analytical expressions of the non-linear differential eqns.(14) - (17) using Homotopy analysis
method

f (M2 +PrA)f —f°+mf f =0 (30)
@ +mPrféd —Prof =0 (31)
¢ —Scfg+mscfep —Scyg=0 (32)

We construct the Homotopy for the eqns.(30),(31) and (32) are as follows:

d°f df d®f df  (df ) d%f
(1— p)(d (Mz-l-Pr//i)EJ‘Fh p(dn?’ —(M2+Prﬂ,)d——(d—j +mfd—772]:0 (33)

n n \dn
d?e d2e dé df
1- +h +mPrf——-Préd— (=0 34
( p)dnz p(dnz i dn] (34)
2 2
(@- p)[g;: —SC}/¢j+h p(j—TﬁerSc i :—z—ScmﬁJ:O (35)

The approximate solution of the egns.(33),(34) and (35) are as follows:

f=f+pf,+p*f,+p°f,+.......... (36)
0=0,+p6, +p°0,+p°O,+..... (37)
G =gy + P+ PG, + Py (38)

The initial approximations are as follows:

f,(0)=S, f,(0)=-1, 6,(0)=1, ¢,(0) =1 (39)
f.(0)=0, fi'(O):O,Qi(O)zo,(,zi,(O):O fori=123..... (40)
fo (©) =0, 6,(:0) =0, ¢, (:0) =0 (41)
f (0)=0,6(0)=0,¢(0)=0 fori=123........ (42)

Substituting the eqns.(36) ,(37) and (38) into the egns.(33),(34) and (35) respectively we get
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3

(- p)(;?

(o + pf, +...)—(M? JrPr/l)di(f0 + pfl+.....)J
n

——(fy+ pfy +..)—(M? +Pri)dd77(f +pfy+..n) (43)

2
d—2(00+p01+ ..... )+mPrfi(¢90+p¢91+.....) (44)
dn dn
+hp 4 =0
~Pro—(6, + pb, +......)
dz

(1— IO)(dd?(% +Pg +-----)—SC7/(¢750 + pg, +)j

2 ; (45)
hp d_772(¢0+p¢l+”"")+mSCfE(¢o+p¢l+ ------ ) 0

~Scy(gy+ pdy+.....)
Comparing the coefficients of p0 pl in the eqgns.(43),(44) and (45), respectively we get

3
o+ (e pra)o -0 ®
n n
3
pl : d f31 d* fo (M2+Pri{%—%j
dp®  dn® dn dp
d°f df, (df,) . d’f "
+h| =2~ (M?+Pra)=2—| =2 | +mf,—2 =0
dny dn \dp dr
2
2 2 2
pt: d 4921_d 6;°+h(d ‘92 +mPr f,—= dé, —Pro, deJ:O
dp® dp n dz d (49)
d’g
e e0
2 2
pt: d ¢21—d ¢20+SC7¢0+h[ ¢°+mScf ¢°—SC7¢0=0J
dn® dzg dn’ n (51)

Let the initial solution of the eqns.(46), (48) and (50) using (39) and (41) are as follows:
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_an
fo'=—€ ° (52)
90 — e—m Prn (53)
dp=e """ (54)
Solving the eqns.(47), (49) and (51) using (40) and (42) we get the following results
_an _2an _an _an _2an
_ (M?4+pPrajsze s s% s S% S S% 5 S%
fi'= > — S —tmal
a a a a 4a
(55)
(M?+Pra)s?  s? 5% 35?
+1- 5 +——-ma| — ——
a 4a a‘ 4a
s, S e—mPrr; S e—mPrq S e—[§+mPr]n Pre—(§+mPr]'I
91 =m-Pr 7 7 > > + 5 + 5
m“Pr® am® pr a a
a(+ mPrj (+mPrj
S S
(56)
S S S Pr
+1-m?Pr? —~ —~
m®Pr?> am?®Pr? 2 2
aj —+mPr —+mPr
—Sce_[msmgjn ren2 | SETT geTm Se_(msmgjn g "
¢ = T tMSCY | T Sea T 7 | T 2
( m°Scy° am“Scy ( aj Scym
mScy + ajmScy+—
(57)
+1+ > 2_m28C27/ 282 2 2S 2.2 ° 2 | - 2
a m°Scy~ am*Scy a Scym
mScy+ almScy+—
S S
Where a=mScy APrS
According to the HAM, we can conclude that
F=Lim @) =fo+f, (58)
0= %LTH(Y) =0, +06, (59)
(60)

¢= I;LT¢(Y) =g+

Substituting the eqns.(52) and (55) in an eqn.(58) and (53) and (56) in an egn.(59) and (54)and (57) in an eqn.(60)

respectively we get the following results.
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_an _2ap
(M2+Prajs?e s s s
a’ B a?
_an _an _2ap
fre_e s +h S 5 S% 5 S% °
R R EPCRPEPS (61)
(M2+Pr/1)s2 S? g2 352
+1- 5 +——-ma| -
a 4a a’ 4a
. S e mPm g MP7 Se’(gﬂnprjﬂ Pre—[ngmPr)q
m* Pr -+ |+ :
m* Pr am® pr a a
a(s+mPrj (S+mPrj
o (62)
S S S Pr
+1-m?Pr? mZPrz_amZPr2+ = |- .
a(+mPrj (+mPrj
B SC e—(m Sc 7+—)r;
a 2
mScy+—
meere)
2 2 S eimsc}/’7 S e7m507’7 S e—(msc}’+§jﬂ efmSCyn
+m-Scy m2Sc2y2  am?Sc? >+ . +Sc -
-mSc /4 V4 S E y
e e 63)
+1+—2_mZSC27 2an2, 2 20A2 2+ 2
a m°Scy® am°Scy a
msey+g almScy+—
3 S
1
Scym?

5. Results and discussion

Figure 1 shows geometry of the problem. Figure 2-4 represents dimensionless temperature &(77) versus
dimensionless distancer; . From Fig.2, it is noted that when the chemical reaction parameter » increases, the
dimensionless temperature profiles remains constant in some fixed values of the other dimensionless parameters .
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From Fig.3, it is inferred that when the magnetic parameter M Zincreases the temperature profiles remains constant
in some fixed values of the other dimensionless parameters. From Fig.4, it depicts that when the sheet shrinks
parameter m increases the corresponding dimensionless temperature profiles decreases, in some fixed values of the
other dimensionless parameters.

Figure 5-6 represents the dimensionless velocity f (77) versus the dimensionless distancez; . From Fig.5, it is

noted that when the magnetic parameter M 2 increases, the corresponding dimensionless velocity also increases in
some fixed values of the other dimensionless parameters. From Fig.6, it is inferred that when the sheet shrinks
parameter M increases the corresponding dimensionless velocity profiles also increases in some fixed values of the
other dimensionless parameters.

Figure 7-9 represents the dimensionless concentration ¢(77) versus the dimensionless distancez . From Fig.7, it
depicts that when the chemical reaction parameter y increases the corresponding dimensionless concentration
profiles decreases, in some fixed values of the other dimensionless parameters. From Fig.8, it is noted that when the

magnetic parameter M 2 increases, the corresponding dimensionless concentration profiles decreases in some fixed
values of the other dimensionless parameters. From Fig.9, it is inferred that when the Sheet shrinks parameter m

increases the corresponding concentration profiles decreases in some fixed values of the other dimensionless
parameters.
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Fig.2: Dimensionless temperature &(77) versus the dimensionless distance 77 . The curves are plotted using the
egn.(62) for various values of the chemical reaction parameter », and in some fixed values of the other

dimensionless parameters Pr, 4, Sc,m,M S,
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Fig.3: Dimensionless temperature &(77) versus the dimensionless distance 77 . The curves are plotted using the

eqn.(62) for various values of the magnetic parameter M 2 ‘and in some fixed values of the other dimensionless
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The curves are plotted using the

eqn.(61) for various values of the Magnetic parameter M 2, and in some fixed values of the other dimensionless

parameters Pr, 4, Sc,m, 7, S.
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Fig.6: Dimensionless velocity f'(77) versus the dimensionless distance 77 . The curves are plotted using the
eqn.(61) for various values of the Sheet shrinks parameter m, and in some fixed values of the other dimensionless
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parameters Pr, 4, Sc, 7, m, S.

44



www.acseusa.org/journal/index.php/aijser ~ American International Journal of Sciences and Engineering Research Vol. 2, No. 2; 2019

a
-
T
-

(=]
(=]
T

Dimensionless concentration ¢ ()
[ L] e _a
P W e i
T T T

Lo ]
—
T

Pr=11=15=062M =15=37=1]

#2232 dnalvtical solution

————Numerical solution

|
1 1.5

Dimensionless distance n

2.5
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Table: 1 Comparison of our analytical results with the previous work

Previous work  Our work Error % Dimensionless
£'(0) £°(0) parameters
3.302776 3.302751 0.00075 A=1.0
3.561553 3.561674 0.00339 A=20
4.000000 4.000874 0.02185 A=40
3.302776 3.302751 0.00075 y=1.0
3.302776 3.302751 0.00075 y=2.0
3.302776 3.302751 0.00075 y=3.0
3.302776 3.302890 0.00345 M2=1.0
3.561533 3.561651 0.00331 M2 =20
3.791288 3.791335 0.00123 M2 =3.0
2.414214 2.413496 0.02974 m=1.0
4.124816 4.124653 0.00395 m=2.0
6.001955 6.000000 0.03257 m=3.0
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Table: 2 Comparison of our analytical results with the previous work

Previous work Our work Error % Dimensionless
| 6'(0) parameters

¢ (0)

-2.665537 -2.665600 0.00236 A=1.0
-2.680315 -2.680300 0.00055 A=20
-2.702455 -2.702500 0.00166 A=4.0
-2.665537 -2.665600 0.00236 y=10
-2.665537 -2.665600 0.00236 y=20
-2.665537 -2.665600 0.00236 y=3.0
-1.493292 -1.493200 0.00616 m=1.0
-3.608226 -3.608377 0.00418 m=2.0
-5.653797 -5.653839 0.00074 m=23.0

Table: 3 Comparison of our analytical results with the previous work

Previous work Our  work Error % Dimensionless
' parameters

¢ (0) 7O

-2.410283 -2.410250 0.00136 A=1.0
-2.417000 -2.416998 0.00008 A=20
-2.427225 -2.427116 0.00449 A=4.0
-2.410283 -2.410250 0.00136 y=1.0
-2.929028 -2.929052 0.00081 y=20
-3.342858 -3.342900 0.00125 y=3.0
-1.917597 -1.917536 0.00318 m=1.0
-2.865386 -2.865348 0.00132 m=2.0
-3.944462 -3.944500 0.00096 m=3.0
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6. Conclusion

In this paper the Homotopy analysis method is employed to get the analytical expressions of the dimensionless
velocity, dimensionless temperature, and dimensionless concentration for MHD fluid flow problem. In this work,
also the effect of chemical reaction, heat and mass transfer on nonlinear MHD boundary layer flow past a porous
shrinking sheet in the presence of suction is investigated. We conclude that the dimensionless concentration is
always decreasing when magnetic parameter, chemical reaction parameter, and sheet shrinks parameter are
increases. We also reported the error table for our analytical works and the numerical works (Previous works).
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