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Abstract 

 

In this paper we discuss with magneto hydrodynamic viscous flow due to a shrinking sheet in the presence of 

suction. We also discuss two dimensional and axisymmetric shrinking for various cases. Using similarity 

transformation the governing boundary layer equations are converted into its dimensionless form. The transformed 

simultaneous ordinary differential equations are solved analytically by using Homotopy analysis method. The 

approximate analytical expression of the dimensionless velocity, dimensionless temperature and dimensionless 
concentration are derived using the Homotopy analysis method through the guessing solutions. Our analytical results 

are compared with the previous work and a good agreement is observed. 

 

Keywords: Chemical reaction; Suction at the surface; Porous shrinking sheet’ Non-linear ordinary differential 

equations; Homotopy analysis method. 

 

1. Introduction  

 

The flow over a shrinking surface is an important problem in many engineering processes with applications in 

industries. In nature, the presence of pure air or water is impossible. Some foreign mass may be present either 

naturally or mixed with the air or water. 
 

Apelbat [1] investigated the mass transfer with a chemical raction of the first order effects of axial diffusion. 

Bhattacharyya et al. [2] examined the stability of viscous flow over a stretching sheet. Brady et al. [3] explained the 

steady flow in a channel or tube with accelerating surface velocity and found the exact solution to the Navier-Stokes 

equations with reverse flow. Cheng et al. [5] investigated the non-similarity solution and correlation of transient heat 

transfer in laminar boundary layer flow over a wedge. Gill [6] examined a process for the step-by-step integration of 

differential equations in an automatic digital computing machine. Crane [7] investigated the flow past a stretching 

plate. Gupta [8] et al. examined the heat and mass transfer on a stretching sheet with suction and blowing. Hakiem et 

al. [9] explained the joule heating effects on MHD free convection flow of a micro polar fluid. Hayat et al. [10] 

found the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet. 

 
Magnetohydrodynamic (MHD) mixed convection heat transfer flow in porous and non-porous media is of 

considerable interest in the technical field due to its frequent occurrence in industrial technology and geothermal 

application. Jensen et al. [11] investigated the flow phenomena in chemical vapor deposition of thin films. Kuo Bor-
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Lin [12] examined the heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation 

method. Miklavcic et al. [13] explained the viscous flow due to a shrinking sheet. Muhaimin et al.[14] investigated 

the effects of heat and mass transfer on nonlinear MHD boundary layer flow over a shrinking sheet in the presence 

of suction. Sajid et al.[15] examined the MHD rotating flow of viscous fluid over a shrinking surface. 

               

 Sajid et al.[16] explained the application of Homotopy analysis method for MHD viscous flow due to a shrinking 
sheet. Troy [18] found uniqueness of flow of a second-order fluid past a stretching sheet. Usha et al.1[29] 

investigated the axisymmetric motion of a liquid film on an unsteady stretching surface. Wang et al.[30] examined 

the fluid flow due to a stretching cylinder. 

 

The aim of this paper is to discuss the mathematical analysis of non-linear MHD boundary layer past a porous 

shrinking sheet with suction. The approximate analytical expressions of the dimensionless velocity profiles, 

dimensionless temperature profiles, and dimensionless concentration profiles are derived using the Homotopy 

analysis method and discussed by graphically. 

 

2. Mathematical formulation of the problem 

 

Let us consider the MHD flow of an incompressible viscous fluid over a shrinking sheet at y = 0. The x and y axes 
are taken along and perpendicular to the sheet respectively, as shown in Fig.1. The fluid is assumed to be Newtonian 

and electrically conducting and the flow is confined to  y > 0. A constant magnetic field of strength B acts in the 

direction of y axis. The induced magnetic field is negligible, which is a valid assumption on a laboratory scale. The 

assumption is justified when the magnetic Reynolds number is small, Hayat et al. (2007). Since no electric field is 

applied and the effect of polarization of the ionized fluid is negligible, we can assume that the electric field E = 0. 

 
Fig.1 Schematic diagram of fluid flow problem 

 

The chemical reactions are taking place in the flow and a constant suction is imposed at the horizontal surface, see 

Fig.1. The governing boundary layer equations of momentum, energy and diffusion for the MHD flow in terms of 

vector notation are defined as follows: 

Continuity equation: 
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V is the velocity vector, p is  the pressure, v  is the kinematic coefficient of viscosity. 
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Finally, the continuity equation is reduced to 
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Under these conditions, the basic governing boundary layer equations of momentum, energy and diffusion for mixed 
convection flow neglecting Joule's viscous dissipation can be simplified to the following equations: 
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Where u, v, w are the velocity components in the x, y and z directions respectively.   is the kinematic viscosity, p is 

the pressure,   is the electrical conductivity,   is the density of the fluid, 0B  is the magnetic induction,  is the 

thermal conductivity of the fluid,  is the dynamic viscosity, K is the porous medium permeability, gc p is the 

specific heat at constant pressure and 
1k  is the rate of chemical reaction. 

The boundary conditions applicable to the present flow are 
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,0,,  yatCCTTWw ww                                                                                             (11) 

  yasCCTTu ,,0  

in which a > 0 is the shrinking constant, W > 0 is the suction velocity, m = 1 when sheet shrinks in x-direction only 

and m = 2 when the sheet shrinks axsymmetrically. 
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The eqns. (6)-(11) reduces to the following boundary value problem 
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Where Pr is the Prandtl number, Sc is the Schmidt number, 
2M  is the Magnetic parameter,   is the Chemical 

reaction parameter,   porosity parameter and S is the suction parameter can be defined as follows: 

,,,,Pr 1

2

02

a

k

a

B
M

D

v
Sc

v
 





 vam

W
Sand

Ka



                                            (18) 

when m = 1 (sheet shrinks in x-direction) and m = 2 (sheet shrinks in axisymmetrically). The mass diffusion 

equation (16) can be adjusted to meet these circumstances if one takes   > 0 for destructive reaction,  = 0 for no 

reaction and   < 0 for generative reaction. 

 

3. Solution of the problem using the Homotopy analysis method 

 

This section deals with a basic strong analytic tool for non-linear problems, namely the Homotopy analysis method 

(HAM) which was generated by Liao [19], is employed to solve the nonlinear differential eqns. (14) – (16).  The 

Homotopy analysis method is based on a basic concept in topology.  Unlike perturbation techniques like [20], the 
Homotopy analysis method is independent of the small/large parameters.  Unlike all other reported perturbation and 

non-perturbation techniques such as the artificial small parameter method [21], the  -expansion method [22] and 

Adomian’s decomposition method [23], the Homotopy analysis method provides us a simple way to adjust and 

control the convergence region and rate of approximation series.  The Homotopy analysis method has been 
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successfully applied to many nonlinear problems such as heat transfer [24], viscous flows [25], nonlinear 

oscillations [26], Thomas-Fermi’s atom model [27], nonlinear water waves [28], etc.  Such varied successful 

applications of the Homotopy analysis method confirm its validity for nonlinear problems in science and 

engineering.  The Homotopy analysis method is a good technique when compared to other perturbation methods.  

The existence of the auxiliary parameter h in the Homotopy analysis method provides us with a simple way to adjust 

and control the convergence region of the solution series. 
 

3.1 Basic concepts of the Homotopy analysis method  

 

Consider the following differential equation: 
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If the auxiliary linear operator, the initial guess, the auxiliary parameter h , and the auxiliary function are so 

properly chosen, the series eqn.(22) converges at 1p  then we have: 
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Differentiating the eqn.(20) for m times with respect to the embedding parameter p , and then setting 0p  and 

finally dividing them by m!, we will have so-called thm  order deformation equation as: 
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Applying 
1L  on both side of equation.(25), we get 
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In this way, it is easily to obtain mu  for 1m , at 
thM  order, we have 
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When M , we get an accurate approximation of the original eqn.(19).  For the convergence of the above 

method we refer the reader to Liao [19].  If equation.(19) admits unique solution, then this method will produce the 

unique solution. 

 

4.  Approximate analytical expressions of the non-linear differential eqns.(14) - (17) using Homotopy analysis 

method 
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The approximate solution of the eqns.(33),(34) and (35) are as follows: 
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The initial approximations are as follows:  
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Substituting the eqns.(36) ,(37) and (38) into the eqns.(33),(34) and (35) respectively we get 
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Comparing the coefficients of  
10 , pp  in the eqns.(43),(44) and (45), respectively we get 
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Let the initial solution of the eqns.(46), (48) and (50) using (39) and (41) are as follows: 
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Solving the eqns.(47), (49) and (51) using (40) and (42) we get the following results 
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Where  SScma Pr  

According to the HAM, we can conclude that 
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Substituting the eqns.(52) and (55) in an eqn.(58) and (53) and  (56) in an eqn.(59) and (54)and (57) in an eqn.(60) 

respectively we get the following results. 
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5. Results and discussion 

 

Figure 1 shows geometry of the problem.  Figure 2-4 represents dimensionless temperature )(  versus 

dimensionless distance .  From Fig.2, it is noted that when the chemical reaction parameter    increases, the 

dimensionless temperature profiles remains constant  in some fixed values of the other dimensionless parameters .  
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From Fig.3, it is inferred that when the magnetic parameter 
2M increases the temperature profiles remains constant 

in some fixed values of the other dimensionless parameters.  From Fig.4, it depicts that when the sheet shrinks 

parameter m increases the corresponding dimensionless temperature profiles decreases, in some fixed values of the 

other dimensionless parameters.            

                  

Figure 5-6 represents the dimensionless velocity )(' f   versus the dimensionless distance . From Fig.5, it is 

noted that when the magnetic parameter 
2M   increases, the corresponding dimensionless velocity also increases in 

some fixed values of the other dimensionless parameters. From Fig.6, it is inferred that when the sheet shrinks 

parameter m  increases the corresponding dimensionless velocity profiles also increases in some fixed values of the 

other dimensionless parameters.  

           

Figure 7-9 represents the dimensionless concentration )(  versus the dimensionless distance . From Fig.7, it 

depicts that when the chemical reaction parameter   increases the corresponding dimensionless concentration 

profiles decreases, in some fixed values of the other dimensionless parameters. From Fig.8, it is noted that when the 

magnetic parameter 
2M  increases, the corresponding dimensionless concentration profiles decreases in some fixed 

values of the other dimensionless parameters. From Fig.9, it is inferred that when the Sheet shrinks parameter m  

increases the corresponding concentration profiles decreases in some fixed values of the other dimensionless 

parameters.   

 
Fig.2:  Dimensionless temperature )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(62) for various values of the chemical reaction  parameter  , and in some fixed values of the other 

dimensionless parameters .,,,,Pr, 2 SMmSc
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Fig.3:  Dimensionless temperature )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(62) for various values of the magnetic parameter 
2M , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, SmSc 
 

 
Fig.4:  Dimensionless temperature )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(62) for various values of the Sheet shrinks parameter m , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, 2 SMSc 
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Fig.5:  Dimensionless velocity )(' f  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(61) for various values of the Magnetic  parameter 
2M , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, SmSc 
 

 

 

Fig.6:  Dimensionless velocity )(' f  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(61) for various values of the Sheet shrinks  parameter m , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, 2 SMSc 
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Fig.7:  Dimensionless concentration )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(63) for various values of the Chemical reaction  parameter  , and in some fixed values of the other 

dimensionless parameters .,,,,Pr, 2 SmMSc
 

 
Fig.8:  Dimensionless concentration )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(63) for various values of the Magnetic parameter 
2M , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, SmSc 
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Fig.9:  Dimensionless concentration )(  versus the dimensionless distance   .  The curves are plotted using the 

eqn.(63) for various values of the Sheet shrinks  parameter m , and in some fixed values of the other dimensionless 

parameters .,,,,Pr, 2 SMSc   

 

Table: 1 Comparison of our analytical results with the previous work 

 

Previous work 

)0(''f  

Our work 

)0(''f  

Error % Dimensionless 

parameters 

  3.302776  3.302751  0.00075 0.1  

  3.561553  3.561674  0.00339 0.2  

  4.000000  4.000874  0.02185 0.4  

  3.302776  3.302751  0.00075 0.1  

  3.302776  3.302751  0.00075 0.2  

  3.302776  3.302751  0.00075 0.3  

  3.302776  3.302890  0.00345 0.12 M  

  3.561533  3.561651  0.00331 0.22 M  

  3.791288  3.791335  0.00123 0.32 M  

  2.414214  2.413496  0.02974 0.1m  

  4.124816  4.124653  0.00395 0.2m  

  6.001955  6.000000  0.03257 0.3m  
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Table: 2 Comparison of our analytical results with the previous work 

 

Previous work 

)0('  

Our work 

)0('  

Error % Dimensionless 

parameters 

 -2.665537  -2.665600  0.00236 0.1  

 -2.680315  -2.680300  0.00055 0.2  

 -2.702455  -2.702500  0.00166 0.4  

 -2.665537  -2.665600  0.00236 0.1  

 -2.665537  -2.665600  0.00236 0.2  

 -2.665537  -2.665600  0.00236 0.3  

 -1.493292  -1.493200  0.00616 0.1m  

 -3.608226  -3.608377  0.00418 0.2m  

 -5.653797  -5.653839  0.00074 0.3m  

 

Table: 3 Comparison of our analytical results with the previous work 

 

Previous work 

)0('  

Our work 

)0('  

Error % Dimensionless 

parameters 

 -2.410283  -2.410250  0.00136 0.1  

 -2.417000  -2.416998  0.00008 0.2  

 -2.427225  -2.427116  0.00449 0.4  

 -2.410283  -2.410250  0.00136 0.1  

 -2.929028  -2.929052  0.00081 0.2  

 -3.342858  -3.342900  0.00125 0.3  

 -1.917597  -1.917536  0.00318 0.1m  

 -2.865386  -2.865348  0.00132 0.2m  

 -3.944462  -3.944500  0.00096 0.3m  
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6. Conclusion 

 

In this paper the Homotopy analysis method is employed to get the analytical expressions of the dimensionless 

velocity, dimensionless temperature, and dimensionless concentration for MHD fluid flow problem. In this work, 

also the effect of chemical reaction, heat and mass transfer on nonlinear MHD boundary layer flow past a porous 

shrinking sheet in the presence of suction is investigated. We conclude that the dimensionless concentration is 
always decreasing when magnetic parameter, chemical reaction parameter, and sheet shrinks parameter are 

increases.  We also reported the error table for our analytical works and the numerical works (Previous works). 
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